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Structures of the cholesteric liquid crystal droplets 
with parallel surface anchoring 

by J. BEZIC*t and S. ZUMERtS 
t Physics Department, University of Ljubljana, 

Jadranska 19, 61000 Ljubljana, Slovenia 
1 Liquid Crystal Institute, Kent State University, 

Kent, Ohio 44242, U.S.A. 

(Received 9 July 1990; accepted 12 October 1991) 

Model structures of cholesteric liquid crystal droplets embedded in a medium 
which enforces parallel surface anchoring are treated. Structures with disclination 
lines of integer and half-integer strength are obtained by minimising the Frank free 
energy. The constant order parameter approximation appropriate for droplets 
which are large compared to the cores of defects and the approximate ansatz with 
the molecular director everywhere tangential to the concentric spherical surfaces 
are used. Within this approach the structure with a diametrical disclination line is 
the most stable. Its free energy is compared to that of the non-twisted bipolar 
structure and to that of the two twisted structures. The well-known structure with a 
radial disclination line and that with a double radial disclination line not found in 
the known literature are presented. It is shown that surface free energy terms, 
usually omitted in the minimization, do not influence substantially the stability of 
the structures discussed. The phase diagram is constructed and the theoretical 
predictions are compared with available experimental results. Further an approxi- 
mate description of a possible director field escape close to the defect lines is 
discussed. 

1. Introduction 
The twisted mesophases [l] usually appear in systems consisting of chiral 

molecules. They are often found in biological materials such as RNA [2,3] and they are 
important for display applications [4,5]. The cholesteric mesophase is the best known. 
Locally it has a nematic-like structure, which, if it is unconstrained, rotates around the 
helical axis perpendicular to the nematic director field. Therefore, in any plane 
perpendicular to this axis the director field is uniform, while along the axis the twist 
angle of the nematic director increases linearly with distance. The corresponding 
wavenumber will be denoted by q. The ideal cholesteric structure is usually deformed 
either by an electric or magnetic field [l] or by constraining surfaces. In the latter case, 
the structure strongly depends on the confining geometry and on the type of 
anchoring of the liquid crystal molecules on the constraining surfaces. In spherical 
droplets with the molecules anchored parallel to the surface [2,6] (parallel boundary 
conditions), the planes with a uniform nematic director field bend and become 
concentric spheres. The helical axes (normal to these spheres) are thus radial 
everywhere. In cholesteric droplets Bouligand and Livolant [2] observed structures 
with various line defects. There were radial disclination lines, diametrical disclination 
lines and more general curved disclination lines. Most frequently the radial disclination 
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594 J. BeziC and S. h m e r  

lines were observed, while the curved disclination lines were observed very rarely. 
Kurik and Lavrentovich 161 reported a transition between the structure with a radial 
disclination line and a bipolar structure [7,8]. Spencer et al. [3] observed structures 
with a diametrical disclination line as well as structures with a radial disclination line. 

The structure of the director field with a radial disclination was described 
geometrically by the Pryce and Frank model [2,9]. Based on this model Bouligand and 
Livolant [2] made a geometrical representation of the structure with a diametrical 
disclination line. They also discussed the possibility of the existence of a line of point 
defects instead of a continuous disclination line 121. Volovik [lo] followed a different 
approach, expressing the molecular director as a linear combination of two unit vectors 

n = cos na + sin fib, (1 4 

Q=Q(r), a=a(r), b=b(r). (1 b) 

where 

The gradient of the angle n was assumed to be pointing along the local helical axis. The 
analogy with the vortex structures in 'He-A phase and the minimization of the Frank 
free energy were used to obtain the structure of a droplet with a radial disclination line. 
Before the minimization the free energy density was averaged over the angle R. 

For a normalized vector field tangential to the surface of a sphere, the sum of defect 
strengths s equals 2 [l, 11,121. Thus, on such a surface of a sphere only pairs of defects 
with the values (1/2,3/2), (1, l), (0,2), . . . , of the defect strengths can exist (see figure 1). 
Since the directions n and - n are equivalent, the molecular director is not an ordinary 
vector and defects with half-integer strength are possible. For defects of the strength 
s= 1 various structures can occur (for a proof see 1131) and three of them are shown 
in figure 2. 

In the following we describe how these cholesteric structures result from a free 
energy consideration. In $ 2  we start with an approximate form of the cholesteric free 
energy appropriate for droplets large compared to the cores of the defects. In the 
minimization process of the free energy we take into account the elastic contribution 
originating from the cholesteric regions and the defect core contribution where the 
isotropic state is assumed. The resulting solutions have defect pairs on the droplet 
surface. In $ 3 we calculate a stability (phase) diagram, including the structures with 
disclination lines, and the untwisted bipolar structure. In $ 4 we briefly discuss terms of 
the Frank free energy associated with kI3 and k2, elastic constants and terms including 
the gradient of the orientational order parameter. These terms are usually omitted in 
such calculations. In $ 5 the isotropic core is substituted with an escaped structure. At 
the end ($ 6) our predictions are briefly compared to the available experimental data. 

2. Free energy 
2.1. General expressions 

Limiting our treatment to large droplets, where distortion induced biaxiality 1141 
can be neglected, the cholesteric liquid crystals can be described in terms of the uniaxial 
tensor order parameter 115,161 

Qij =(1/2)s(r)C3ni(r)nj(r) -6ijl9 (2) 

(3) 

where 

s = ((3 cos2 e - 1y2). 
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Cholesteric liquid crystal droplets 
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Figure 1. The pairs of defects that can occur on the surface of a sphere when a vector field is 

tangential to it and directions n and - n of the director are equivalent. The sum of defect 
strengths must be equal to 2 and the presented pairs are (1/2, 3/2), (1,l) and (2,O). 
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Figure 2. The defects of strength s = 1,2,3/2 and 1/2 on the surface of a sphere for Q, + qr = 0, 
n/4 and lr/2 (see equations (7) and (10)). In the latter three cases (s = 2,3/2 and 1/2) a change 
in a, + qr is associated with a rotation of the structures. For s = 2 the rotation angle 
is equal to a, + qr. For s = 3/2 it is equal to 2(R, + qr) and for s = 1/2 it is equal to 
-2(a,+qr). In the s= 1 case the three structures are not related by rotations. 
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596 J. BeziC and S. Zumer 

The free energy density of the cholesteric phase measured relative to the free energy 
density of the isotropic phase can be written as a sum of two terms: 

Jf=f,ndef(Q$( Tk T )  +fdef(JQij( T r)), (4) 

where Q: is the order parameter of the undeformed cholesteric phase. The argument 
SQij indicates a variation of the order parameter resulting from confinement-induced 
deformations of the cholesteric phase. The first term in equation (4) stands for the 
difference between the free energy density of the isotropic phase and the free energy 
density of the undeformed cholesteric structure; it is negative below the transition 
temperature from an isotropic phase to an undeformed cholesteric phase. The second 
term stands for the change of free energy density caused by deformation of the 
cholesteric structure. With increasing deformations this term becomes larger until the 
sum S f  in equation (4) vanishes and the transition to the isotropic phase occurs. 

In supramicron droplets the magnitude of the orientational order parameter S is 
practically everywhere constant [17,18] except close to the surface and close to the 
defects, The surface can, depending on the nature of the interfacial interactions, 
increase or decrease the order in a layer a few nanometers thick. On the other hand on 
approaching singular points or lines of the director field, at distances a few nanometers 
away the elastic free energy starts to increase sharply and the degree of order is 
therefore depressed. To simplify our treatment by using a constant S approximation we 
limit our discussion to large liquid crystal droplets embedded in a material, which 
negligibly affects the degree of orientational ordering in the liquid-crystalline phase. 
First, the continuous decrease of the order parameter on approaching the defects will 
be substituted by a jump. This discontinuous change from its bulk nematic value to the 
isotropic value occurs on the border of a region called the core of the defect where the 
liquid crystal is in the isotropic phase with S and Gfequal to zero. Because the surface 
separating the nematic phase and the defect core is introduced artificially no boundary 
conditions are prescribed there. The validity of the approximation will be discussed in 
section 4 and further in section 5 where instead of an isotropic core an escaped structure 
with constant S will be introduced. 

According to this constant S approximation we can for the termf,,, of the free 
energy density from equation (4) use the Nehring-Saupe [19] form of the Frank free 
energy density 

fFr =fo - k2(n * rot n) 

+(1/2)(k,,(divn)2+k22(n.rotn)2+k,,(n x rotn)2) 

-(1/2)k2,div((n.grad)n-ndivn) 

+ k ,  , div (n div n). (5) 

This is the most general expression obtained for the symmetry Din,, if the expansion of 
the free energy includes terms up to quadratic in the derivative and up to linear in the 
second derivative of the director field [19]. The constant f o  corresponds to the free 
energy density of the unwound cholesteric (nematic) structure with symmetry DinP The 
constants ki and k, are the well-known elastic constants, which are, in general functions 
of the magnitude of the orientational order parameter S [20,21]. 

Equation (5) can also be derived using the Landau-de Gennes theory of liquid 
crystal phase transitions [15,16,20]. To obtain different coefficients k, , and k,, at least 
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Cholesteric liquid crystal droplets 597 

cubic surface terms in the order parameter [22] must be taken into account and to 
obtain a splay-bend (k ,  3) term second derivatives must be included. 

The volume integral of the saddle-splay (k2J and the mixed splay-bend (kI3) terms 
can be converted to a surface integral by Gauss’s theorem. Therefore these terms will be 
omitted [ 151 in the first part of our discussion. We will consider their effect in 0 4. In that 
section also terms which couple the molecular director n with spatial derivatives of the 
magnitude of the orientational order parameter S will be briefly discussed. 

For an undeformed cholesteric structure the Frank free energy must be zero. To 
satisfy this condition we express constants fo and k, in terms of the cholesteric 
coefficient q: fo = k2,q2/2 and - k, = k2,q. Furthermore the one-constant approxim- 
ation K = k ,  , = k,, = k33 is used to obtain a simplified expression for the Frank free 
energy density of a deformed cholesteric phase, namely 

fa,r=(K/2)((divn)2+(n.rot n+q),+(n xrotn),). (6) 

2.2. Minimization 
To find all minima of the free energy of the cholesteric droplet with this 

approximation a system of partial differential equations has to be solved. Limiting our 
treatment to tangential boundary conditions enables us to use the approximation 
where the vector field is tangential to concentric spheres. This is consistent with the 
original Pryce and Frank model and seems to be a reasonable approximation to some 
real systems [2 ,3 ,6] .  Nevertheless, we must remember that this approximation 
excludes solutions where the disclination line transforms into a sequence of point 
defects [2 ]  or escapes forming a singularity-free structure [l, 151. 

For the pure tangential field the following ansatz can be used 

where 
n = cos Re6 + sin Re,, 

= w, e,4), 
describes the rotation of the director around the helical axis parallel to the coordinate 
vector e, (see figure 3 where the corresponding spherical coordinate system is shown). 
For R = 0 the director is parallel to the coordinate vector ee; for R = n/2 it is parallel to 
the coordinate vector e& Using the ansatz given by equation (7) the Frank free energy 
of a cholesteric phase from equation (6) yields 

fdef = (K/2)[(  1 + 0,2 sin’ 8 + + 2 ~ ,  cos 8)/(r sin e), + (52, - q)2] .  (8) 
Subscripts r, 8 and 4 of R denote corresponding derivatives. A minimization leads 
to a Poisson equation in spherical coordinates 

0 = sin2 8 +Re sin 8 cos 8 + a,, + (r2R,, + 2rR, - 2rq) sin’ 8, (9 4 

(9 b) 

and to a boundary condition on the surface of a droplet 

0 = R, - q, 

which is for q = O  consistent with the boundary condition used by Williams [8 ] .  
Equation ( 9 4  has a simple particular solution qr and a simple solution of its 
homogeneous part (so - l)$ +no so that the general solution which satisfied condition 
(9 b) can be written as 

R =(so - 1)4 +Ro + qr. (10) 
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598 J. BeziC and S. h m e r  

In equation (10) symbols so and Ro denote constants. The solution of the homogeneous 
part describes the vector field on a surface of a particular concentrical sphere while the 
particular solution describes the cholesteric twist around the helical axes, which are 
everywhere radial (normal to the concentrical spheres). Therefore all resulting 
structures have radial or diametrical disclination lines, which are parallel to the local 
helical axes and are thus x disclination lines [l, 151. The constant so which is an integer 
or half integer, describes the strength of these disclination lines along the positive part 
of the z axis (see figure 1). The solutions corresponding to disclination strengths 2 -so 
differ from those corresponding to so for a x rotation of the droplet around the axis 
normal to the disclination line. Therefore, they need not be treated separately. The 
constant R, defines the structure on the droplet boundary. 

Introducing the solution given by equation (10) into equation (9) we obtain the free 
energy density as 

fder = (K/2)[  1 + (so - + 2(s, - 1) cos O]/(r  sin e)2. (1 1) 

It should be stressed that in the approximation of equal elastic constants the coefficient 
q does not influence the free energy density. Namely, for the proposed solution in 
equation (10) the cholesteric term in equation (6) vanishes. Furthermore, neither does 
the free energy depend on the constant R,. This is expected for solutions with so # 1, 
when R, + qr is equal to the angle of rotation of the structure as a whole (see figure 2). 
For the special case so = 1, when the value of the sum R, + qr defines one of the possible 
s = 1 director fields, the independence of fdef on no and q is no longer obvious and will 
be discussed in the subsection devoted to the diametrical defect. In the following we first 
review possible structures and then discuss their stability in Q 3. 

2.3. Presentation of possible structures 
The structures with high defect strengths (so > 2) have a higher free energy 

dominated by terms quadratic in so which makes them unstable; therefore only 
structures corresponding to so = 1/2, 1 and 2 need to be discussed in detail. These 

Figure 3. The director n and the spherical coordinate system with all notations used in text. 
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Cholesteric liquid crystal droplets 599 

structures are presented graphically by using the standard nail presentation [l, 151 (see 
figures 4 (a), 5 (a), 6 (a) and 7 (a)) and by director field lines on some chosen concentric 
spheres (see figures 4 (b), 5 (b), 6(b) and 7 (b)). In the nail presentation the director in the 
cross-section plane is represented by a line segment of unit length. The director inclined 
with respect to the cross-section plane is represented by a nail. The head of the nail 
stands for the side where the director lies below the cross-section plane; its length is 
proportional to the cosine of the corresponding inclination angle. Three cross-sections 
are shown for each case. One is a cut through the centre of the droplet parallel to the 
disclination line and two are cuts perpendicular to the disclination line. One of them is 
above and the other is below the droplet centre. The cross-sections parallel to the 
disclination line nicely reflect the fact that helical axes have everywhere a radial 
direction normal to concentric spheres. The disclination lines are presented schemati- 
cally by bars of the appropriate length and with a thickness proportional to the 
disclination strength. From the cross-sections normal to the disclination lines the 
rotation of the director around these lines (disclination strength s) is visible. 

2.4. Diametrical defect 
This appears in the solution corresponding to so = 1 as shown in figure 4, where the 

disclination line is along the diameter of the droplet. The defect line terminates on the 
droplet surface in two s= 1 defects. The field line presentation in figure 4(b )  shows how 
the solutions given by equation (10) change with qr, that is on going from one to 
another concentric sphere. Two extreme solutions are circles that resemble meridians 
(bipolar structure) for R, + qr = nn(n = 1,2,. . .) or parallels (concentric structure) for 
R, + qr = (2n + 1)7~/2(n = 0,1,2,. . .). Intermediate curves wind around the sphere from 
one pole to the other. The R, determines how this sequence of the field lines on 
concentric spheres starts on the droplet surface. The droplet with such a structure has 
cylindrical symmetry. 

2.5. Radial defect 
This defect appears in the so = 2 or so = 0 solutions. Here an s = 2 disclination line 

starts at the droplet centre and terminates on the surface, which can be seen in 
figure 5 (a). It goes along the + z axis for so = 2 and along the - z axis for so = 0. The 
director lines on each concentric sphere (see figure 5(b)) are circles with a common 
point on the + z axis. On going along the + z axis these field line circles rotate and scale 
according to equation (10). so = 2 and 0 solutions are thus equivalent to the geometrical 
model of Pryce and Frank [2,9]. 

2.6. Double radial defect 
This situation which has yet to be discussed in the known literature is realized for 

so = 1/2 or so = 3/2. In the case so = 1/2 the disclination line is again diametrical but 
consisting of two radial parts, one with the strength s = 1/2 along the + z axis and the 
other with the strengths = 3/2 along the - z  axis (see figure 6 (a)). In the case so = 3/2 it is 
reversed. Therefore we introduce the name double radial defect. The disclination line 
thus terminates on the droplet surface in the s = 1/2 and s = 3/2 defects. The field line 
presentation drawn in figure 6 (b) shows that change in the product gr only rotates the 
director line structure on a sphere according to equation (10). 
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600 J. Bezii. and S. h m e r  
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Figure 4. The structure with the diametrical defect corresponding to so = 1 is shown: (a) 

perpendicular cross-sections, one parallel to the disclination line (( y, z) plane) and two 
perpendicular to it (parallel to (x, y) plane); (b) director field lines on concentric spheres 
where from left to right the argument no + qr from equation (10) is equal to z/2,n/4 and 0. 
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Cholesteric liquid crystal droplets 601 

Y 

' Y  

Figure 5. The structure with the radial defect line corresponding to so=2 is shown: (a) 
perpendicular cross-sections, one parallel to the disclination line (( y ,  z) plane) and two 
perpendicular to it (parallel to the (x, y) plane); (b) director field lines on concentric spheres 
where from left to right the argument Ro+qr used in equation (10) is equal to 4 2 .  4 4  
and 0. 
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Cholesteric liquid crystal droplets 603 

Y 

Y 

Figure 7. The bipolar model structure is shown: (a) perpendicular cross sections; (b) director 
field lines. 
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604 J. BeziC and S. h m e r  

2.7. Bipolar structure 
For large pitches (q+O) or small radii the surface constrained cholesteric structure 

is expected to unwind; a bipolar structure [7,8] with two point defects is expected to be 
the most stable. This structure is usually found in such nematic droplets where the 
molecules are anchored parallel to the surface [7,8]. Its diametrical cross-section is 
shown schematically in figure 7. 

3. Stability diagrams 
In this section the free energy of structures with x disclination lines as well as of the 

untwisted bipolar structure is compared. In order to evaluate the free energy of 
structures with disclination lines, defect cores must be introduced. The shapes of these 
cores are approximated by simple geometrical bodies like cylinders and spheres. The 
sizes are determined from the limitation that the elastic free energy fdef cannot exceed 
fundef-the difference in the free energy of the unconstrained cholesteric phase and the 
isotropic phase. 

3.1. Diametrical defect 
Inserting so = 1 into equation (1 1) the elastic free energy density of the structure with 

(12) 

a diametrical disclination line becomes 

fl = (K/2)1/(r sin O)2. 

The denominator is equal to the square of the distance from the centre of the 
disclination line; thus the core is a cylinder with radius rl (see figure 4 (a)). According to 
our approximation we can use the relation fi(rl) = fundef to obtain rl =(K/(2f,ndef))”2 
and further in agreement with the Landaude Gennes [15, 16,201 description of the 
nematic-isotropic transition, we find r ,  proportional to l/(T* - T)”’ where T* is the 
supercooling limit of the isotropic phase. The radius rl is at T* - T equal to 1 K about 
20nm (MBBA, [16]). Integrating the elastic free energy over the remaining part of the 
droplet and adding the core contribution, we obtain the following approximate 
expression for the free energy in the limit R / r ,  >> 1 

F ,  =2nKR(ln [2Rl(r,,/e)j +O((r,/R)2)).  (13) 

The behaviour of the function F ,  is presented in figure 8 (a)  (the lower of the A curves). It 
should be mentioned that in the single elastic constant approximation this free energy is 
the same as for a nematic droplet with a concentric structure [7]. That is the structure 
which may be stable in nematic systems with very small bend elastic constants [23]. 

To understand why in our approximation the free energy density is the same for 
sequences starting from different surface structures (a,), we introduce our approximate 
solution given in equation (10) into a more general form of the free energy given by 
equation (5)  where k l l  # k33.  We omit the surface terms and obtain 

fl=(1/2)(k,, cos20cos2R+k3,[sin2R+sin2 Ocos2Q]}/(rsinO)2, (14a) 

with 

R = R, + qr. (14 b) 
For R = O  the director lines are meridional. The splay (k, deformation contributes 
mainly near the poles and the bend deformation predominantly near the equator, 
as shown on figure 4 (b). The parallel director field lines for R = 7c/2 undergo only a bend 
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Cholesteric liquid crystal droplets 605 

deformation. We can conclude that the independence of the free energy density on the 
sum R,+qr (see equation (11)) is a consequence of our single elastic constant 
approximation. Using this approximation the free energy dependence on the ratio 
kl,/k33 is discussed later in the subsection phase diagrams. Further we speculate that, 
for unequal bend and splay elastic constants the regions with one of these director field 
structures would expand and the regions with other field structures would shrink. This 
would additionally deform the cholesteric structure unwinding the intrinsic cholesteric 
twist for some radii and overwinding it for other radii. Such a change of a cholesteric 
structure with a diametrical defect would certainly lead to a decrease of its free energy 
with respect to the case with an unchanged twist described by equation (14 b). But a 
detailed calculation would require a numerical determination of the structure; this is 
beyond the scope of this paper. 

3.2. Radial defect 
The core model for the structure with the radial disclination line (strength s = 2) is 

more complicated. The expression for the free energy density is 

f, = K( 1 + cos O)/(r sin O),. (15) 

In large droplets (R>>core radius) 8 is small practically everywhere along the defect line 
and the numerator in equation (1 5 )  can be approximated by 2 K. A simple model for the 
radial defect core along the + z axis is again a cylinder with radius r,. For values of the 
angle O>.n/2 there is no singularity in the free energy density. The exception is the 
centre of the droplet where we approximate the shape of the core by a hemisphere with 
the same radius 1, (see figure 5(a)). Comparing the free energy density as given by 
equation (15) close to the radial defect line to that with the s = 1 (diametrical) case from 
equation (12) we find that the latter is nearly four times smaller; therefore the following 
approximation is used 

r ,  =2r , .  (16) 
For droplet radii R much larger than the radius of the core r,, the resulting free energy 
expression for the s = 2  case is 

F ,  =4nKR{ln(R/(r,,/e))+ O(rJR)} .  (17) 

The dependence of the F, on the droplet radius is presented in figure 8 (a) (the lower of 
the B curves). Comparing F ,  and F, a critical ratio Rlr ,  is calculated, above which the 
structure with a diametrical disclination line is more stable than that with a radial 
disclination line. The resulting critical ratio is approximately 3. This is outside the 
range (R / r l  >> 1) where our approach can be safely used. Therefore, according to our 
model in the large droplet limit a structure with the diametrical defect is more stable 
than a structure with a radial defect. Here the inclusion of the different elastic constants 
is not expected to change significantly the free energy because around x disclination 
lines with s # 1 the field lines are only rotated for different radii (see figure 5 (b) and 6 (b)). 

3.3. Double radial defect 
This solution corresponds to s = 1/2 or what is equivalent to s = 312. The expression 

for the free energy density is 

f1,,=(1/8)K(5-4cos O)/(rsin O)*. (18) 
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Figure 8. The free energy dependence on R/r ,  for: (a) the diametrical structure (A), the radial 
structure (B) and the double radial structure (C); (b) the bipolar structure. On the first 
diagram (a) there are two curves for each structure. The lower one is the free energy 
without surface contributions while for the upper one the surface contributions associated 
with the gradient of S are added. In (b) the free energy of the bipolar structure without 
surface contributions is plotted for qr, =0.15, 0-1, 0-05 and 0. 

To estimate the total free energy the shape of the core must be chosen again. Along the 
+ z  axis as shown in figure 6(a)  the disclination line has the strength s = 1/2. As before a 
large droplet is assumed so that in most of the core region 8 is small and the numerator 
in equation (18) is approximately K / 8 .  In the defect core along the - z  axis where the 
strength s is 3/2 the angle 8 is close to 7c and the numerator of flIz is approximately 
9K/8. A simple model for the core is thus a cylinder with a radius r3 /2  along the - z axis 
and with rl12 along the + z  axis where 

r1,2=r1/2 and r312=3rl/2. (19) 

(20) 

The behaviour of the resulting free energy 

Fl12 =(5/2)nKR{ln [4R/(rl,/e39/10)] + O(rl/R)}, 

is shown in figure 8 (a) (the lower of the two C curves). In the relevant region (R >> rl)  the 
free energy of a structure with a double radial defect is between the free energies of the 
diametrical and radial case. So far we can conclude that among structures with 
disclination lines the structure with a diametrical defect is the most stable. 

3.4. Bipolar structure 
Finally, cholesteric structures must be compared to the non-twisted bipolar 

nematic structure which is expected to be the most stable when qR is small. In this case 
the spherical confinement induces the unwinding of the intrinsic twist deformation. The 
free energy density calculations [7,8] and computer simulations [17,18] show that 
there are isotropic cores at both poles of the bipolar structure. Nevertheless, the 
integral of the free energy density for the bipolar structure does not diverge even in the 
constant S approximation. Therefore, in our large droplet limit the isotropic core of 
point defects can be neglected [7] and 5nKR as an approximate free energy expression 
for nematic droplets with a non-twisted bipolar structure [7,8] can be used. Because 
there is no twist deformation in an unwound cholesteric droplet the term Kq2/2 must 
be added 

F,=5.rtKR+(2/3)nKR3qZ. (21) 
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Cholesteric liquid crystal droplets 607 

In figure 8 (b) the behaviour of F ,  as a function of R/r ,  is presented for several values of 
qr,. In agreement with experimental values for q (between 0.03 nm-' and 0.003nm-' 
[24]) and our estimated value for rl (approximately 20 nm) we choose the values qr, 
equal to 0.15,0-1.0.05 and 0. It is shown that for very small values of R/r ,  (where our 
model is not justified) this structure has for every qr, a free energy higher than for 
structures with disclination lines. For R / r ,  > 5 where our approximation is expected to 
be reasonably justified, there is a range of droplet sizes where depending on qr, the 
bipolar structure has a lower free energy than structures with a disclination line. 

3.5. Phase diagram 
Putting together all free energy information a complete phase stability diagram 

corresponding to our model in a two dimensional qr, - R / r ,  space can be constructed 
(see figure 9). It includes only two phases, one with a bipolar structure and the other 
with the diametrical x disclination line. In the region of relatively small droplet radii 
R/r ,  < 10 where our model is not expected to be more than quantitative, only structures 
with a diametrical defect are stable. Above Rmin% lor, the region of a stable bipolar 
structure appears and at R z  17r, the transition curve already reaches its maximum 
qr, w0-08. It should be stressed that in this region a reliable description should include 
a variable order parameter and biaxiality. At large droplet radii (R/rl  >> 1) where our 
model is reliable the behaviour of the phase line between the structure with diametrical 
defect and the bipolar structure is similar to a Rq = constant curve. In figure 9 the curve 
Rq = 1 is illustrated. 

The stability of cholesteric structures when elastic constants are not equal can be, in 
the limits of our simple model, examined approximately by substituting solutions 
defined by expression (10) into expression (5 )  for the Frank free energy density (see the 
subsection on diametrical defect). Integrating the resulting expressions we obtain 
numerical values which are summarized in the table. The free energy of the diametrical 
structure (so = 1) is everywhere lower than the free energy of the radial structure (so = 2). 
The difference between the two free energies increases with increasing splay elastic 
constant (k, ,). These results are expected because there are regions of the pure bend 

8.08-: 
diametrical 

I I 150  1 R/r ,  * 
0 58 100 10 

Figure 9. The R/r ,  -qr ,  phase stability diagram of the cholesteric droplet with parallel surface 
anchoring calculated without surface terms. For comparison the Rq = 1 curve, which 
approximately describes the experimental data, is shown. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



N
um

er
ic

al
 v

al
ue

s f
or

 th
e a

pp
ro

xi
m

at
e f

re
e e

ne
rg

y 
of

 c
ho

le
st

er
ic

 st
ru

ct
ur

es
 w

ith
 d

ia
m

et
ri

ca
l (s

o 
=

 1)
 an

d 
ra

di
al

 (s
o 
=

 2)
 li

ne
 d

ef
ec

ts
 

(in
 th

e d
im

en
sio

nl
es

s f
or

m
 F

/(n
kZ

2r
1)

) fo
r s

ev
er

al
 ra

tio
s o

f e
la

st
ic

 co
ns

ta
nt

s a
nd

 se
ve

ra
l R

/r
l. 

rl
 is

 th
e r

ad
iu

s o
f a

n 
is

ot
ro

pi
c 

co
re

 in
 th

e 
di

am
et

ri
ca

l s
tr

uc
tu

re
 fo

r 
th

e 
ap

pr
ox

im
at

io
n 

of
 e

qu
al

 e
la

st
ic

 c
on

st
an

ts
. 

F/
(n

k,
,r

l) 
fo

r 
qr

, =
0.

1.
 

k
l 1

 : k
2

2
 : k

3
3

 

2
:l

:l
 

1
:l

:l
 

1:
1:

2 
5

:l
:l

 
1:

1:
5 

R
lr

, 
s,

=l
 

s,
=2

 
so

=
l 

so
=

2 
s,

=
l 

so
=

2 
s,

=
l 

so
=

2 
so

=
l 

s,
=2

 

40
 

40
2.

9 
98

8.
3 

31
2.

4 
51

1.
6 

47
07

 
75

56
 

62
58

 
20

05
.0

 
90

7.
9 

14
04

.0
 

60
 

63
9.

6 
17

64
0 

51
58

 
86

2.
1 

81
3.

9 
12

74
.0

 
96

9.
4 

37
32

.0
 

16
36

0 
23

72
-0

 
80

 
94

3.
5 

25
59

.0
 

74
1.

1 
12

35
.0

 
11

35
.0

 
18

45
.0

 
14

89
0 

55
79

.0
 

22
51

.0
 

34
83

.0
 

10
0 

12
66

0 
36

03
.0

 
97

76
 

16
27

0 
14

85
-0

 
23

89
0 

20
32

0 
79

25
.0

 
28

96
0 

45
15

0 

B a N
c 5 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Cholesteric liquid crystal droplets 609 

deformation (see figure 4(b)) in the diametrical structure. In spite of the reduction of the 
difference between the two free energies the diametrical structure remains more stable 
even for a very large bend (k33) elastic constant. These simple estimates do not include 
the overwinding and underwinding of the cholesteric structure, which may occur 
around the diametrical defect. Therefore, only a more detailed treatment which is 
beyond the scope of this paper could show the role of the ratio of elastic constants on 
the phase stability diagrams. 

Before making final conclusions the effect of the omitted surface terms of the elastic 
free energy will be examined in $4 and non-singular (escaped) structures will be 
discussed in $5. 

4. Surface free energy terms 
In the previous section only bulk terms of the free energy density given in equation 

(6) were discussed. Here we discuss possible surface terms. First, are the bulk terms 
which can be transformed into surface integrals [25,26] and second are the quasi- 
surface terms associated with the gradient of the orientational order parameter. In large 
droplets these are only significant close to the surface of the defect cores and close to 
other order affecting surfaces. 

4.1. k,, (splay-bend) and k24 (saddle-splay) contribution 
The corresponding free energy terms 

fsurf= -(l/2)kz4div((n-grad)n-ndiv n)+k,,div(ndivn), (22) 
must be integrated over the part of the volume of the droplet, where the liquid crystal is 
in the cholesteric phase. Using the Gauss theorem these volume integrals transform 
into surface integrals of the vector fields 

j24= -(l/2)kz4[(n*grad)n-ndiv n], (23 a)  

jI3=kl3ndivn, (23 b) 
over the surface enclosing the ordered region. The director n is a unit vector so that the 
saddle-splay term can be rewritten as [26] 

j24 = -(l/2)k2,[n x rot n - n div n]. (24) 
The surfaces where these fields must be taken into account are outer spherical interfaces 
[7] and inner cylindrical and spherical interfaces between the cholesteric phase and the 
isotropic cores. A simple geometry consideration yields (see figures 4 (a), 5 (a), 6 (a) 
and 7(a)) 

m, = er, (25 4 

(25 b) 

for the normals of the spheres and 

m, = -(sin 0e, + cos Oe,,), 

for the normals of the cylinders. The contributions of the saddle-splay field written in 
equation (24) can be now written in a more explicit way 

m, - j24 = - (1/2)kZ4 l/r, 
m; jZ4= +(l/2)kZ4[l +n,cos0]/(rsin 0). 

(26 4 
(26 b) 
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610 J. BeziC and S. h m e r  

The integral of the contribution (26 a) over the surface of the droplet obviously yields 
the same value -271k2,R for all described structures. Also, in our limit where R/rl >> 1 
the integral around each of the disclination lines considered is equal 271k24R. Thus the 
total k24 contribution is zero for all three cholesteric structures and - 2nk2,R for the 
bipolar structure. 

For the mixed splay-bend field given in equation (25 b) the expressions to be 
integrated are 

m; i 13 = 0, (27 4 

(27 b) 

m, * j13 = - kI3{cos 8 cos R -Ro sin 8 sin R +Q, cos Q] 

x (cos 0 cos R)/(r sin 8). 

As we can see in equation (27a) there is no contribution from the droplet surface. 
Taking into account (R/rl >> 1) and also requiring Rq>> 1 the surface integral yields 
-2nkl3R for-all three disclination lines. The total k13 contribution is thus zero for the 
bipolar structure and non-zero but the same ( -271k13R) for all three cholesteric 
structures. It should also be mentioned that taking into account the k13 term the 
appropriate minimization process would also require us to include terms with higher 
order derivatives of the order parameter Q in the Landau expansion [27]. 

Because the k13 and k,, terms do not change the relative stability of the three x 
disclination lines, the structure with the diametrical defect remains the most stable. 
Although the general features of the transition to the region of stable bipolar structure 
remain unchanged it is significantly rescaled with the change of values for k24 and k13 

elastic constants. There are no available experimental data on k24 and k13 yet, therefore 
we present in figure 10 phase diagrams for three arbitrary cases k24=O, k13=O (no 
splay-bend and no saddle-splay contributions); k24 = K, k ,  = 0 (saddle-splay contri- 
bution is included) and k2, = 0, k13 = - K (splay-bend contribution is included) are 

0.6 
9 l-1 

8.4 

0.2 

diametrical 

- - - - - - * _ _ _ _  

0 20 
Figure 10. The comparison of phase stability diagrams for different surface terms. The curves 

separating regions where diametrical or bipolar structures are shown for each case in the 
(R/rl, qr,) plane are shown for several approximations. There are three pairs of curves (a), 
(b) and (c). In each pair the lower curve corresponds to the free energy without the gradient 
of S terms and the upper to the case where they are included. For curves (a) we take k,, = O  
and k,,=O, for curves (b) kZ4=0, k I 3 =  --K and to obtain curves (c) k,,=K, k,, =O. For 
comparison the experimental curve Rq = 1, which separates the bipolar structure from 
structures with disclination lines is drawn. 
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Cholesteric liquid crystal droplets 61 1 

compared. The region R/r ,  < 20 when our results are unreliable is shown separately. 
For large radii all functions are inversely proportional to R; the curve Rq = 1 is also 
shown in figure 10. 

4.2. Order parameter gradient contribution 
In the following we estimate the neglected free energy contributions of the regions 

close to defects, where S is not constant, while for the constraining outer surface we 
assume that it does not affect the ordering. The free energy density SJ from equation (4) 
in the Landau-de Gennes theory includes all possible invariants of the tensor order 
parameter and its space derivatives [20]. Using equation (2) for the uniaxial tensor 
order parameter the bulk terms of the free energy density Sf up to second order in 
derivatives of S and n can be written as [16] 

Sf=f0(T) +(3/4)aCT- T,* -(2/3Hk,dS ’Nq2/41s 
+ bS 3/4 + (9/16)cS 

+(l/l8S ,)(kll +2kzz)[grad S I 2  

+(1/6S2)(k,, -k,,)[n.gradS]’ 

+(2/3S)(k11 -k,,)[div n][n.gradS] 

+(1/3S)(k,,-k,,)[n x rotn].gradS 

+(kll/2)[diu n]’ 

+(kZ2/2)[n.rot n-q], 

+(k3,/2)[n x rot nI2, 

where the coefficients kii are proportional to S 2  and k,, is equal to k33.  The usual 
Landau4e Gennes coefficients (L1, L,), were here substituted by those from the Frank 
expression for the free energy density. 

In the limit of large droplets, terms with the gradient of the order parameter S 

(1/18S ,)(k,, +2kzz)[grad S]’ (29 4 

(1/3S2)(k1, -k2,)S [n x rot n] agradS, (29 d 1 
reduce to cholesteric-isotropic (core) inter-phase contributions. In the single elastic 
constant approximation K = k ,  , = kzz = k33 the only relevant gradient term (29 a) is 

(1/6S ’)Kcgrad S]’. (29 e) 
To make a simple estimate of this contribution we assume that inside the core the order 
parameter is a linear function of radius, where S = 0 in the centre of the defect and S = So 
at the boundary of the core. The volume integral of equation (29 e) over the whole core 
SF,,,, yields a significant contribution only for a line defect. For a cylindrical core (see 
figures 4 (a), 5 (a) and 6 (a)) of length R and regardless of its radius we find 

6Fgrad = (1/6)nKR. (30) 
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612 J. BeziC and S. h m e r  

Therefore, for the radial core where the defect has length R the gradient contribution is 
only one half of the diametrical case. This increases the relative stability of the radial 
structure (see the upper curve of each pair in figure 8 (a)), but not enough to become the 
most stable. The phase stability diagram still includes only the bipolar and diametrical 
structure, where because of the increase of free energy of the diametrical structure its 
range of stability is slightly smaller (see the upper curve of each case illustrated in 
figure 10). 

5. Non-singular cores for defects of integer strength 
The existence of s = 1 defects with non-singular cores in nematic phases [ 1,271 and 

in cholesteric phases [lS,  291 was proven a long time ago. To describe completely the 
escape of the director field into the third dimension on approaching the centre of a line 
disclination is beyond the scope of this paper. In this section expression (6) for the 
cholesteric free energy in the constant uniaxial order parameter approximation will be 
used to obtain an approximate non-singular director field close to the line defects with 
strengths so = 1 and so = 2. For line defects of half integer strength (for example so = 1/2) 
non-singular configurations cannot exist in the uniaxial approximation [ 11. To 
simplify the problem we first consider an unconstrained cholesteric system with 
disclination lines perpendicular to cholesteric planes ( x  disclination lines). The 
disclination line with an isotropic defect core does not deform these planes, but a defect 
where an escape in the third dimension occurs forces cholesteric planes to bend and 
connect. 

5.1. Non-singular defect in an unconstrained cholesteric phase 
Let us start with a general ansatz for the director field in cylindrical coordinates 

(P, 494 (see figure 11) 
n = (cos R sin Y, sin R sin Y, cos Y). (31) 

The angle R measures the rotation of the director around the cylindrical z axis and Y is 
the angle between the director and the z axis. Exact minimization can be performed by 
choosing Y = 4 2 ,  that is by choosing the director everywhere parallel to the (p, 4) plane 
similarly to what was done for the spherical case in Q 2. Substituting ansatz (31) into our 
simplified expression for the Frank free energy density from equation (6) and 
minimizing the resulting free energy the expression 

n = R(4, z)  =(so - 1)4 + qz, (32) 

was obtained for the angle R. Expression (33 a)  analogous to expression (10) describes 
cholesteric structures periodic in the z direction with a line defect of strength so along 
the z axis. This is a line defect with a singular core, because the director is kept 
everywhere parallel to the (p, #) plane. The corresponding free energy density and total 
free energy are 

A, = (K/2)S$/P2, (33 a)  

Ff, = nKhsi In (R/rso) + nKhr,2,/2, (33 b) 

and 
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Cholesteric liquid crystal droplets 613 

Figure 11. The cylindrical coordinate system with the director n. Y is the angle between the z 
axis and the director and Q is the angle of rotation around the z axis. R is equal to zero 
when the director is in the (x, z )  plane. 

where the superscript i stands for the isotropic core and h is the defect length. The core 
radii rl for so = 1 and r2 for so = 2 are the same as those for diametrical and radial defect 
lines in spherical structures respectively (see Q 3). 

A non-singular (escaped) core is described by a director field where the variable 
angle Y vanishes on approaching the z axis. In a rough approximation we assume 
Y = Y ( p )  and take into account possible 4 (for so # 1) and z dependences. In addition 
we keep the Y = constant solution for the angle R from equation (32) unchanged. To 
minimize the corresponding free energy we average expression (6) over 4 and z and find 

(fdef>cP, z = (K/2)  
[(lip)' sin’y 

+ 2(l/p)Y’ cos Y sin Y 

+ 2( 1/p)2(so - 1) sin’ Y! + Y 2  

+ 2( l/p)(so - 1)Y’ cos Y sin Y 

+(I/p)’(s0 - 1)’ sin2 Y + q’ cos’ Y]. (34) 
The brackets ( )cP,z denote averaging and Y’ are the p derivatives. Minimization of 
the averaged free energy density in expression (33) yields a differential equation for the 
angle Y similar to that for the escape in the nematic case [1,28] 

pY”+ Y’ =(l/p)(sg-(qp)2)sin Ycos \Y. (35) 
The only difference is in the term with the cholesteric wavenumber 4. We assume that 
this term can be neglected (which is justified in the small q limit) and obtain 

p/rzo = (tan (Y/2))1’s~, (36) 

where rzo is the radius of the non-singular core for the structure corresponding to so. 
The escaped structures for s o = l  and so=2 are presented in figure 12. Two 
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614 J. Bezit and S. h m e r  

perpendicular cross-sections are shown using nails for the presentation of the director 
field. Combining free energy densities from equations (33 a) for p > r:o and (34) for p -= r:o 
with the solution from expression (36) we find the free energy of the unconstrained 
cholesteric phase with a non-singular defect core 

F",'xnKhln(R/r",+xKh{3+(qrf)'[(3/2)-1n4]}, for so= 1 (33 c) 

F ~ x x K h 4 1 n ( R / r ~ ) + x K R { 6 + ( q r ' , ) 2 [ 1  -x/4]}, for s0=2. (33 4 
and 

With a further minimization of the total free energy, values rf = 2.l/q and r; = 3.l/q are 
obtained. For q between 0.03 nm- ' and 0.003 nm- ' the corresponding radius rE varies 
from 70nmxr, to 700nmx lor l .  Comparing the free energy of the singular core in 
expression (33 a) to that of the non-singular core in (33 d ) we find a critical value for the 
cholesteric wavenumber q (O.l/r, for s ,=l  and 0.2/r1 for so=2)  above which the 
singular core is stable. It should be stressed that even if our approximate solution in (36) 
is used outside the small qr range the corresponding non-singular structure can be 
stable. 

5.2. Non-singular defect in a cholesteric droplet 
Close to the z axis (z>>p) the angle between the p and t9 coordinate vectors is small 

(compare figures 3 and 1 l), thus in large droplets (R >>ria) for Y = 4 2  (p  = r;,,) and z >>rzo 
ansatz ( 7 4  for a droplet closely resembles ansatz (31). Therefore, we use the latter 
solution also in the droplet case. The configuration outside the core and the 
configuration inside the core thus match almost perfectly where z>>rE0, but there is a 
mismatch in a small region where z x rso (the centre of the droplet) and z x R (the surface 
of the droplet). Neglecting these regions and taking into account expressions (12) and 
(15) for the regions outside the defect core we evaluate the integral of the free energy 
density for cholesteric droplets with so = 1 and so = 2 non-singular defects as 

F ;  xxKR(2ln(2R/r;e)+2(3 +(4r;)'[(3/2)-In4])f, (37 4 

F ;  x x K R ( 4  In (2Rlr;e) + 6 +(qr',)'[l- x/4]}. (37 b) 

and 

A further minimization of expression (37 a) and (37 b) over radii r; and r', yields 

r",2*l/q and r;w3*l/q. (38) 
These results tell us that if we want to use our approximate description of the non- 
singular defect core the condition Rq>>l must be satisfied. 

The resulting expressions for the free energy 

F? x n K R ( 2  In (2Rq)/(ed(5)) + 7}, (39 4 
F ;  xxKR{4ln(2Rq)/(e, /( lO))+ 8}, (39 b) 

of the structures with diametrical and radial defect lines are plotted together with free 
energies of the previously treated structure with a singular double radial defect line as 
functions of droplet size and cholesteric wavenumber. In figure 13 there are four 
diagrams showing the difference in the droplet free energy A F  as a function of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Cholesteric liquid crystal droplets 615 
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Figure 12. Model structures for the escape along (a) the so = 1 and (b) so = 2 disclination lines. 
For both model structures three cross-sections are shown in the nail presentation: one in 
the (x, y) plane and two parallel to the (x, y) plane. The positions of the two (x, y) cross- 
sections are indicated by arrows on the (x, z) cross-section. As can be seen on the (x, z) 
cross-section the director n is rotated for 3/2 x around the z axis from the lower to the 
upper (x, y) cross-section. 
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dimensionless droplet radii R/r and dimensionless cholesteric wavenumber 4r1, where 
rl is the radius of the isotropic core of the s= 1 disclination line. In each diagram the 
droplet radius and the cholesteric wavenumber define a point in the (R/rl, 4r1) plane 
and the corresponding difference in the droplet free energy is given by the distance of 
the point on the free energy surface from the (R/rl,qrl) plane. The upper surface 
describes the difference (F,  -Fl) between the droplet free energy of a stable structure 
with a radial defect (F,)  and of a stable structure with a diametrical defect (Fl). The 
lower surface describes the difference ( F ,  - Fl,,) between the droplet free energy of a 
stable structure with a radial defect (F,) and a stable structure with a double radial 
defect (F1,,). The additional superscript (e) of the free energies used in figure 13 indicates 
the use of the escaped core model. It is more stable (has lower free energy) than the 
model with the isotropic core in the region of small qr,. The free energy surfaces are 
plotted only in the region of Rq > 30 where the approximations for escaped cores are 
expected to be reasonably safe. In the case with the radial defect limited to R/r; > w 10 
this together with expression (38) leads to the limiting curve Rq = 30. From figure 13 (b) 
which shows the behaviour of the corresponding free energy differences at small qrl we 
can see that for qrl w ~ 0 . 0 2  the structure with the radial defect line becomes more 
stable than the structure with the double radial defect line. In addition with decreasing 
qrl the difference between the structures with radial and diametrical defect lines also 
tends towards zero. This indicates that the escaped core structures could lead to the 
result where the structure with a radial defect line would be the most stable. 

6. Discussion and comparison with experiments 
The structures in cholesteric droplets with parallel surface boundary conditions 

have been discussed. Using the ansatz given by equation (7), which constrains the 
director parallel to concentric spheres, models for structures with different x 
disclination lines are obtained. In the one elastic constant approximation and for the 
director everywhere parallel to concentric spheres they are all described by linear 
functions (10) corresponding to integer or half integer values of the constant so. The 
three lowest free energy structures (so = 1/2,1,2) are shown in figures 4,5 and 6. Within 
the model using the isotropic core approximation the most stable structure is the 
diametrical structure (see figure 4), next is the double radial structure (see figure 6) and 
the last is the radial structure (see figure 5). Even the inclusion of the surface and order 
parameter gradient terms do not change their relative stabilities (see figures 8 and 10). 
The only simple structure which can have a lower free energy than diametrical structure 
is the untwisted bipolar structure. Therefore, the phase stability diagrams (see figures 9 
and 10) include only these two phases. Depending on the surface and the order 
parameter gradient terms the phase boundary line is shifted but its shape remains more 
or less unchanged (see figure 10). 

The isotropic core was substituted by a non-singular configuration (see figure 12) 
in 0 5 .  In the uniaxial order parameter approximation the escape can occur for 
disclinations of integer strength and cannot occur for disclinations of half integer 
strength [l]. Therefore, such an escape reduces the free energy associated with line 
defects of integral strength and thus increases the relative stability of a radial structure 
compared to a double radial structure and compared to a diametrical structure. 

In papers describing experiments on cholesteric droplets with parallel surface 
boundary conditions [2, 3,6] radial, diametrical and bipolar structures have been 
reported. Kurik and Lavrentovich [6] used a mixture of cholesterol chloride and 
cholesterol myristate in droplets ( R  % 50 x m) dispersed in glycerol to- obtain 
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Figure 13. A two dimensional plot of the differences between the droplet free energies (AF) of 
various structures presented as functions of R / r ,  and rlq. In each figure the upper surface 
corresponds to the free energy difference between the most stable structure with a radial 
defect and the most stable structure with a diametrical defect and the lower one 
corresponds to the difference between the radial and the double radial case. 
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tangential surface boundary conditions. This mixture of left handed and right handed 
cholesterics enabled the authors to observe the transition from a left handed to a right 
handed cholesteric via a nematic-like phase by varying the temperature. The authors 
found that the ratio of the number of the radial structures to the number of the 
diametrical structures was about one hundred. The double radial structure was not 
reported. For values of qR between one and minus one the bipolar structure was 
observed. Kurik and Lavrentovich [6] also observed that the size of the core for the 
radial structure is proportional to the inverse of the cholesteric wavenumber q. 

In [2] Bouligand and Livolant used a wide variety of cholesteric liquid crystals for 
example DNA, PBLG, as well as PAA and MBBA doped with cholesterol benzoate. 
For PBLG [30], PAA [l5] and MBBA [lS] it is known that the elastic constants are 
unequal. Droplets of cholesteric phase (R between 10 and 50 x m) were dispersed 
either in the isotropic phase of the same material or in glycerol. They observed the 
radial and diametrical structures, but also structures with curved disclination lines 
connecting a pair of points, which are not on opposite poles of the droplet surface. In 
this structure parallel boundary conditions are satisfied on the droplet surface, but it 
cannot be described by solution (10) obtained with our theoretical model. In [3] 
Spencer et al. reported both diametrical and radial structures found in RNA droplets 
(Rw 10 x m), but they do not mention how frequent either of these two structures 
were. 

The theoretical prediction that the double radial structure is less stable than 
diametrical and radial defect structures (where escapes into the third dimension are 
possible) agrees with the fact that it was not observed in experiments [2,3,6]. Another 
argument in favour of escaped structures is that the core size is proportional to the 
inverse of the cholesteric wavenumber as reported by Kurik and Lavrentovich [6] and 
was here shown in expression (38). The question why experiments show that radial defect 
lines are practically always more stable than the diametrical ones is not completely 
answered. We have shown that by including a non-singular description of the defects 
the difference between the corresponding free energies decreases. We can speculate that 
a more precise calculation would result in a further reduction of this difference and in a 
possible change over in the stability. 

One of the authors (S.2.) would like to acknowledge the partial support of Solid 
State Chemistry grant No. DMR89-1747. 
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